
HDswitch
An interactive live video mixer for HD videos

Stephan Soller, Computer Science and Media
Stuttgart Media University

ss312@hdm-stuttgart.de

Video streaming has become common place to broadcast
and record conferences and university lectures. More
complex video streaming setups combine multiple video
and audio sources into one live stream users can watch
over the internet. Usually a human operator does this
with some kind of video and audio mixer. This paper de-
scribes the motivation for building a new video audio
mixer application, it's requirements, design as well as
some details of its implementation.

Simple video streaming scenarios only use one video
and audio source (e.g. a webcam). Such a stream can be
broadcasted directly by a streaming server like Icecast
[1] or send to a streaming platform like Ustream [2]. IP
cams even integrate a streaming server and can broad-
cast directly without additional hardware or software.

More complex setups combine multiple video and au-
dio sources. For example one camera showing the speak-
er, one frame grabber to capture slides and multiple mi-
crophones (speaker, presenter, questions from the au-
dience). A human operator then uses a video and audio
mixer to combine these sources into one video stream.
Such a setup is often necessary for lager university lec-
tures and conference talks.

There are already many video mixer applications tar-
geting professional studio broadcasting (Wirecast [3]),
conference live streaming (DVswitch [4]) and Let's Play
sessions (Open Broadcaster Software, short OBS [5]).
Most of these solutions are often designed as monolithic
"one size fits all" applications (e.g. Wirecast, OBS). While
quite feature rich this makes it difficult to add additional
automatic or manual processing stages (e.g. automatic
cutting and high quality archiving). The rest of the
streaming system then grows around those limitations.
So in the end the system is more defined by

workarounds than by the actually necessary data flows
and actions.

The monolithic nature also makes error handling
quite challenging. Hardware and software errors in oth-
er parts of the streaming system can often be recovered
from (e.g. restarting a streaming server or reinitializing
a camera), but most video mixers don't allow to define
complex error handling. In the worst case a simple error
leads to a zombie system that still looks fine to the op-
erator but neither streams nor archives any data. With
much effort it's often possible to build the system so
that errors lead to a complete collapse of the entire sys-
tem. This is then noticed by the operator who can then
restart it. But this is far away from proper error recov-
ery.

Many features also lead to more complex user inter-
faces and interactions. This requires to educate opera-
tors and makes the software more difficult to use, espe-
cially in stressful live situations.

Other video mixers simply can't handle HD video.
DVswitch for example is limited to the standard defini-
tion DV video format. Others can handle HD video in the-
ory but fail to do so because of performance problems.
In case of live video just one element (e.g. a color space
conversation) in the entire streaming pipeline has to fail
or be to slow to ruin an entire system. Debugging and
performance tuning of these problems can often take
weeks. Even after the cause is determined it's often im-
possible to properly solve these problems because the
used software can't be changed accordingly.

Experience gained with two older live streaming sys-
tems (one based on Wirecast, one on DVswitch) lead to
the desire to tackle those problems at their roots. De-
signing a new video mixer application from the ground
up opens many possibilities:

• All required features can be integrated properly
without leading to workarounds in other parts of
the system.

Abstract

Introduction1.

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

• Unreliable or performance hungry components
can be sidestepped where possible or processed by
the proper hardware (CPU, GPU or hardware de-
coder or encoder).

• The user interface can be kept as simple as possi-
ble.

HDswitch tries to meet the following requirements.
These are not strict requirements for the first prototype
but HDswitch should meet them once it's fully imple-
mented. So they are the base for all design decisions:

• Composite at least two 1080p video sources at 60
FPS into one output video stream.

• Composite at least two microphone sources into
one output sound stream.

• Fast switching between configured scenes (e.g.
show only stream A, only stream B or picture-in-
picture with A and B).

• Allow the operator to get realtime feedback of the
final video and audio output.

• Make it easy for the operator to signal the start
and end of individual talks in the stream (e.g. by
pressing the space key) and enter the meta data
for a talk (e.g. title and speaker).

• Easy, clean and loseless machine interface for fur-
ther processing of the output video.

• Generate a correct output video with proper time-
stamps so that later processing stages don't en-
danger audio and video synchronization.

• Allow to implement automatic error recovery on
as many levels as possible.

Figure 1 shows the basic structure of how HDswitch
processes video and audio data:

• The video streams from multiple video sources are
composed into one combined video. Either by
showing only one of the source streams or by com-
bining them ala picture-in-picture.

• The final video is then displayed for the operator
(video monitor) and send to the output server.

• Basically the same happens for the audio sources:
All sources are combined into one audio stream
(mixing). This stream is then played back for the
operator (audio monitor) and send to the output
server.

• The output server combines all incoming audio
and video data into one data stream and distrib-
utes it to all interested clients.

• Clients are other programs implementing later
processing stages, e.g. an ffmpeg process that en-
codes the video into WebM and sends it to a live
streaming server for broadcasting.

Requirements2.
Basic design3.

Figure 1: Dataflow and structure of HDswitch video and audio processing

Video Source A Combined
Video

(composing)Video Source B

…

Video
Monitor

Output
Server

(muxing)

Audio Source A

Audio Source B

…

Combined
Audio

(mixing)

Audio
Monitor

Client A

Client B

…

2

The APIs used by HDswitch are primarily selected to lim-
it 3rd party error sources and cut down external depen-
dencies to readily available APIs.

The Video 4 Linux 2 (V4L2) API [6] is used to interact
with USB webcams and USB 3.0 frame grabbers. Or gen-
erally speaking everything that implements the USB
Video Class (UVC) protocol. V4L2 is the direct Kernel lev-
el interface for this purpose. As such it it well document-
ed and reliable. Libraries or frameworks would also build
upon V4L2 and using the API directly eliminates abstrac-
tion or programming errors in those components.

The ALSA API [7], which is the kernel level audio inter-
face, was initially used to capture audio data. But man-
agement of many audio sources with ALSA is quite error
prone and CPU intensive. Most standard Linux distri-
butions today ship with the PulseAudio sound system
[8]. And those distributions emulate the ALSA API via
PulseAudio. So even when using the ALSA API the data
would pass though PulseAudio. Therefore PulseAudio
was directly used to capture audio data. This removed
much of the CPU time and PulseAudio offers advanced
latency control and easy management of multiple audio
sources.

All image processing is done on the GPU via OpenGL
[9] (e.g. resizing, blending, composing, color space con-
versation). The open source graphics driver and OpenGL
stack is stable and fast enough so that even cheap inte-
grated GPUs have no trouble with the necessary image
processing. The stack also uses the same OpenGL imple-
mentation for GPUs of different vendors (AMD, nVidia
and Intel). Device drivers are handled in vendor specific
backends. This limits vendor specific differences in the
OpenGL API as most code is used for all vendors. The
open source graphics stack is also part of the Linux ker-
nel and therefore available out of the box without any
driver installation or configuration. By focusing on this
OpenGL stack and a relatively conservative set of
OpenGL extensions HDswitch should run on any recent
Linux kernel of the last few years.

HDswitch doesn't use any GUI library (e.g. GTK or
KDE) as such libraries are difficult to integrate into an
event based mainloop. They also add quite a lot of de-
pendencies and error sources. Instead the little bits of
GUI HDswitch actually needs are rendered directly via
OpenGL. This also guarantees that the video preview can
be rendered properly. Thats important because standard
GUI libraries sometimes add CPU rescalers or color space

conversations to display a video (depending on system
configuration, version or other installed software and
updates). In case of HD video this can easily eat up most
of the CPU time, killing the performance needed for HD
material.

To create a desktop window and establish an OpenGL
context the SDL library v2.0 [10] is used. It's a simple and
relatively lightweight library that doesn't impose any
specific architecture on the rest of the program.

UNIX domain sockets [11] are used to transfer the out-
put video to clients. UNIX domain sockets are optimized
for local inter process communication and are easily fast
enough for 1080p video material at 60 Hz (about 240
MiByte/s). The output data stream is a normal Matroska
video [12] with uncompressed video and audio data. Ad-
ditional events and data can be easily embedded into the
Matroska video as a separate data stream. This is very
useful to signal the start and end of individual talks as
well as to transmit the meta data of such talks. Since
every data packet in Matroska already has a timestamp
this approach allows for exact and easy automatic video
cutting in later processing stages. If the data is not need-
ed the extra data track can simply be ignored or deleted.

These choices have been made so clients don't need to
implement an extra protocol to get data from HDswitch.
UNIX domain sockets can be read directly with standard
video processing tools like ffmpeg and Matroska is a well
supported container format. The output data can also be
easily used in any form of program or shell script to add
more complex processing. Thanks to this HDswitch can
be easily combined with the full power of shell scripting
(e.g. gzip the output stream and dump it to disk or send
it over a high speed network). The socket API is also easy
to integrate into a non-blocking event loop.

An alternative to this would be to use shared memory
buffers. But clients would need to implement this pro-
tocol and transmission of additional data streams would
be more difficult. Since UNIX domain sockets are fast
enough for the application at hand there is no need to
increase complexity.

Video encoding is kept out of HDswitch. It only does
video and audio mixing and tries to change the input
material as little as possible. Later stages (e.g. an ffmpeg
client process) can then take care of video encoding.
Since video encoding is easily the most CPU intensive
processing step it's often the focus of prolonged per-
formance and quality tuning. Standard tools like ffmpeg

3

have a multitude of options for these purposes and if
HDswitch would include an encoder it would have to
provide all these options as well.

Not encoding the output video also allows later stages
to efficiently do post processing on the raw material. E.g.
an ffmpeg process can read the raw video from the UNIX
domain socket and apply a nose filter to the video. If
HDswitch would already encode the output video noise
would not be encoded as noise but as encoding artifacts.
This would prevent any later processing stages from ap-
plying a proper nose filter.

HDswitch avoids computationally intensive processing,
handles it with the GPU or lets external processes take
care of it (e.g. an ffmpeg process takes care of video en-
coding). What remains is mainly coordination of how the
data streams are moved between CPU, GPU and clients.
HDswitch doesn't offer much parallelism in the sense of
CPU bound work that should be distributed over multi-
ple CPU cores. Instead it mostly requires I/O multiplex-
ing. HDswitch takes advantage of that by using a single
threaded poll() [13] based event loop and non-blocking
I/O for its program logic. This makes event based pro-
gramming the main paradigm.

Thanks to the universal I/O principle of UNIX and
some Linux specific system calls events from almost
every kind of source can be handled as a file descriptor
(basically a handle to a kernel object).

• The Video 4 Linux 2 API already uses file descrip-
tors, one for each opened device. If such a file de-
scriptor is readable a new video frame is ready on
that device.

• The socket API also uses file descriptors. If the
server file descriptor is readable a new client con-
nection is ready and can be established by calling
connect(). That system call in turn returns new
file descriptors for each client connection. If such
a connection file descriptor is writable the client is
ready to receive more data.

• timerfd_create() [14] can be used to create file
descriptors that are readable after a specified time
or in specified intervals. HDswitch uses one to pe-
riodically ask the SDL library for pending mouse,
keyboard and window events (unfortunately SDL
doesn't expose a file descriptor to wait for it's
events).

• signalfd() [15] provides a file descriptor to han-
dle incoming UNIX process signals (e.g. SIGINT
and SIGTERM). If the file descriptor is readable a
new signal is pending and can be processed.

All these different file descriptors can then be monitored
with one looped poll() system call. This system calls ba-
sically returns a list of all file descriptors ready for fur-
ther processing or waits until one is ready. If for example
a Video 4 Linux 2 file descriptor is reported to be read-
able HDswitch calls the code to read all pending frames
from the device.

Threads would offer an alternative to implement this
kind of I/O and event multiplexing. It would however re-
quire difficult and error prone thread synchronization.
The influence of latency control and GUI interactions on
other threads would be quite complex leading to a high
risk of deadlocks. A single threaded environment also
makes it easier to experiment with complex control flow
and event causality. This was very useful when explor-
ing latency control implementations.

Unfortunately there is one major API that can't be
easily integrated into a poll() based mainloop: PulseAu-
dio. PulseAudio itself uses its own poll() based main-
loop and provides an interface to make PulseAudio use
a custom mainloop. So it's possible to teach PulseAudio
how to use the mainloop of HDswitch. But this would re-
quire much more code than seemed reasonable at the
time. After a short discussion on the PulseAudio mailing
list a different approach was chosen: PulseAudio more or
less provides the same functionality than the mainloop
implemented for HDswitch. So the entire event handling
code of HDswitch was migrated to use the PulseAudio
event loop. The custom event loop implementation used
previously was discarded. This allowed to use the event
based programming paradigm for everything and elim-
inated some code redundancy while maintaining the
same functionality.

Efficient video stream handling
Since HDswitch should process 1080p video streams with
60 Hz efficient handling of video frames is important.
Figure 2 shows how this process is implemented by
HDswitch.

The Video 4 Linux 2 API offers to directly map video
buffers into process address space. Those buffers are
filled with data by the USB device and the kernel then
notifies HDswitch that the buffer is ready. One buffer

Implementation4.

4

Figure 2: Video processing steps taken by HDswitch.

raw frame
texture, YUYV

texture upload
CPU to GPU

V4L2 buffer
mmaped, YUYV

colorspace conversation
YUYV to RGB

blending, composing

HDswitch
window

draw monitor

colorspace conversation
 RGB to YUYV

Combined video
texture, RGB

Output frame
texture, YUYV

texture download
GPU to CPU

Output buffer
YUYV

other video sources

then contains a complete video frame in a raw format
(YUYV, or more precisely YCrCb with 4:2:0 subsam-
pling).

The complete video frame is then copied to an OpenGL
texture as it is. No processing occurs on the CPU.
HDswitch statically allocates textures for all streams and
overwrites the same texture memory for each new
frame (using the GL_ARB_texture_storage extension).
This is different from the default OpenGL procedure that
would create a new texture for each frame. Statically
allocating and overwriting a texture for each stream
avoids fragmentation of GPU memory which in turn
could cause fluctuations in the OpenGL performance.

Each time a new frame is available the composite
frame is redrawn. This frame contains all frames that
make up the current output video. For example first
the latest video frame of video source A, then the latest
video frame of video source B scaled down to the lower
right corner (picture-in-picture). During this drawing
operation a fragment shader performs the color space
conversation from 4:2:0 YUYV to RGB as well as any
required alpha blending. Scaling is automatically taken
care of by the GPU texture interpolation.

The resulting composite frame is then drawn into the
HDswitch window to give the operator feedback of what
the output currently looks like. After that the composite
frame is again converted to 4:2:0 YUYV by using another
fragment shader. The result is copied back to CPU mem-
ory and handed over to the UNIX domain socket server

which wraps it into an Matroska container and distrib-
utes it to all connected clients.

This scheme creates n+2 drawcalls per incoming frame
where n is the number of video sources that are visible
on the composite frame. The frame data is copied at
least once (from the V4L2 buffer into an internal OpenGL
buffer). Additional copies are created when the output
frame is distributed over the UNIX domain sockets.

The drawing code and texture handling are currently
implemented in a straight forward manner and still offer
many performance optimizations (e.g. OpenGL pixel
buffer objects and shader optimizations). Same applies
to the code that distributes the frames to all clients.

Latency handling and timestamp generation
Latency is an important factor in live streaming systems.
HDswitch combines data from possibly many different
microphones, webcams and frame grabbers. And each
video frame and piece of audio can have a different la-
tency. That is the time it takes from its recording on the
device until HDswitch finally gets the data via PulseAu-
dio or Video 4 Linux 2. But in the output video all sources
should be properly synchronized. HDswitch achieves
this either by configuring and monitoring the latency of
the sources (audio) or by trying to keep the latency as
low as possible (video).

HDswitch requests a 10 ms latency from PulseAudio
and continuously monitors the actual latency reported
by PulseAudio. On the few tested development systems

5

this lead to an reported audio input latency of 0.5 ms
to 2.5 ms. To keep video latency as low as possible
HDswitch only uses raw (YUYV) data from webcams and
frame grabbers. Using MJPEG or H.264 added noticeable
delay to the video input.

The latency information from PulseAudio is also used
to properly synchronize and mix multiple audio inputs
and calculate proper timestamps for the output audio.
Since Video 4 Linux 2 does not seem to delay input
frames HDswitch doesn't pay attention to video input la-
tency.

The timestamps of the output video tell encoder pro-
grams and media players when a part of video or audio
data should be displayed or played. Video players use
that information to properly synchronize audio and
video playback. But media players also do a lot of error
correction and guessing to properly play videos with
incorrect timestamps. Encoder programs (e.g. ffmpeg)
usually don't do this kind of error correction but try to
keep the video as original as possible. This makes it pos-
sible that a video with incorrect timestamps plays find
on most media players but breaks once encoded to an-
other format (e.g. from MP4 to WebM). Audio video syn-
chronization can be off, can drift slowly away while the
user watches the video or seeking can be broken.

To avoid such effect in later processing stages
HDswitch takes care to write correct timestamps. This is
done by measuring the timestamps as soon as possible
and by including all available latency data.

The second aspect of HDswitch strongly influenced by
latency is the monitor output. Thats the realtime output
of the final video also distributed to the clients. So the
operator gets a proper preview of what viewers on the
Internet would see.

The human operator wants to see and hear the output
video as soon as possible. Large delays or asynchronous
audio (e.g. 1 or 2 sec. delay) can strain the operator quite
heavily (e.g by causing slight disorientation or
headaches). Making it very demanding if not impossible
to work for 8 hours.

To keep the latency to the monitor output as low as
possible HDswitch shows or plays the final video as soon
as it is created (see figure 1). This however leads a pretty
fast but more or less unsynchronized video and audio
monitor output. The video monitor is updated directly
after a new frame is received. But new audio data is kept
back until the mixer has data from all audio sources. If

the latency of one source exceeds 40 ms the mixer no
longer waits for that source (at 40 ms latency starts to be
noticeable). The idea is to allow the operator to actually
hear which device causes the large latency and fix it.

HDswitch can composite two 1080p streams at 60 fps
but isn't able to send such a output video to clients. Not
enough time is spend in the output server code that ac-
tually sends the data to the clients (more specifically in
the write() system call). The cause is not yet clear as
CPU utilization is at about 70%. Possible causes are stalls
in the OpenGL pipeline or some unknown behavior of
the PulseAudio mainloop. Until now all testing was per-
formed with unoptimized debug builds so a short term
solution might be to enable compiler optimizations (e.g.
-O2). A proper solution would probably be to extract the
output server into it's own thread or use AIO (which glib
implements as an extra thread).

During development HDswitch was mainly test with
cheap consumer hardware: analog microphones for
about 10€ and webcams in the 50€ to 100€ range. All
this hardware showed reasonable (unnoticeable) laten-
cy. One configuration HDswitch was developed for
should use a prosumer camera (about 1500€) and an HD-
MI to USB 3.0 frame grabber (about 400€). PulseAudio re-
ports an audio latency of about 300 ms for the camera
and about 550 ms for the HDMI frame grabber. Unfor-
tunately this doesn't seem to be a bug in PulseAudio as
the same could be reproduced on multiple Windows sys-
tems.

This extremely high latency on more expensive hard-
ware breaks the HDswitch monitor. The video is shown
without noticeable delay but the audio is almost half a
second delayed. If the mixer threshold is changed from
40 ms to 600 ms the output video will be properly syn-
chronized. The large latencies are then properly includ-
ed in the timestamp calculations. But the audio of the
monitor output still be delayed by about 550 ms. Proba-
bly confusing and straining the operator.

Currently HDswitch outputs one frame for each input
frame received. If two video sources with 60 fps each are
used HDswitch will send 120 fps to the output video. This
can be solved by waiting until all video sources delivered
an input frame for the current output frame. However
special care must be taken in regard to variable frame
rates of webcams. In case of bad lighting webcams in-

Limitations and further work5.

6

crease their exposure time leading to frame rates as low
as 7.5 fps.

Timestamps of the video frames are calculated by sub-
tracting the current time from the time the video was
started. So the video time stamps are based on the sys-
tem clock. The audio timestamps are based on the num-
ber of samples received from PulseAudio. This should
be based on the system clock as well but might also
be based on the soundcard clock. The soundcard and
system clocks can deviate over time, leading to slightly
faster or slower audio. In case of long running videos this
can lead to wrong timestamps and asynchronous video
and audio playback. More research and testing needs to
be done to fully understand how this effects HDswitch.
Especially regarding when PulseAudio uses the sound-
card or system clock.

The timestamps also don't snap to some constant
frame rate (e.g. 30 fps) but instead are microsecond
based. This allows small variation on the frame timings
depending on the current program performance. As a
result this might lead to micro stuttering on displays
with high refresh rates (e.g. 90 Hz or 144 Hz). This can be
solved easily by "snapping" timestamps to the framerate
of the output video (e.g. 30 fps).

Pretty much all webcams offer compressed high res-
olution video formats (MJPEG or H.264). How these for-
mats effect video latency and if and how this latency
can be measured requires further research. But to use
these formats each frame must be decoded before it can
be moved to the GPU. This can be very CPU intensive.
Therefore this approach is best combined with hardware
decoder APIs, especially since these APIs allow to leave
the output frame directly on the GPU (as an OpenGL tex-
ture).

The project was frozen after ⅔ of it's development time
in favor of an Open Broadcaster Software (OBS) based
solution. It was necessary to free development time for
other processing stages that required extensive redesign
and reimplementation to work around OBS's limitations.
While this meant the return to workaround based design
of the streaming system it allowed to introduce addi-
tional developers to the streaming project.

In its currently incomplete state HDswitch is working
for most use cases but needs some further work until the
performance and usability requirements are met.

[1] Icecast.org
http://www.icecast.org/
Retrieved 2014-07-14

[2] Ustream website
http://www.ustream.tv/
Retrieved 2014-07-23

[3] Wirecast
http://www.telestream.net/wirecast/
Retrieved 2014-07-23

[4] DVswitch
http://dvswitch.alioth.debian.org/wiki/
Retrieved 2014-07-23

[5] Open Broadcaster Software
http://obsproject.com/
Retrieved 2014-07-23

[6] Video for Linux Two API Specification
http://linuxtv.org/downloads/v4l-dvb-apis/
v4l2spec.html
Retrieved 2014-07-23

[7] Advanced Linux Sound Architecture (ALSA)
http://www.alsa-project.org
Retrieved 2014-07-23

[8] PulseAudio
http://www.freedesktop.org/wiki/Software/
PulseAudio/
Retrieved 2014-07-23

[9] OpenGL
http://www.opengl.org/
Retrieved 2014-07-23

[10] Simple DirectMedia Layer (SDL)
http://libsdl.org/
Retrieved 2014-07-23

[11] UNIX domain sockets man page
http://man7.org/linux/man-pages/man7/
unix.7.html
Retrieved 2014-07-23

[12] Matroska Media Container
http://matroska.org/
Retrieved 2014-07-23

[13] poll() man page
http://man7.org/linux/man-pages/man2/
poll.2.html
Retrieved 2014-07-23

Conclusion6.

References7.

7

http://www.icecast.org/
http://www.ustream.tv/
http://www.telestream.net/wirecast/
http://dvswitch.alioth.debian.org/wiki/
http://obsproject.com/
http://linuxtv.org/downloads/v4l-dvb-apis/v4l2spec.html
http://www.alsa-project.org
http://www.freedesktop.org/wiki/Software/PulseAudio/
http://www.opengl.org/
http://libsdl.org/
http://man7.org/linux/man-pages/man7/unix.7.html
http://matroska.org/
http://man7.org/linux/man-pages/man2/poll.2.html

[14] timerfd_create() man page
http://man7.org/linux/man-pages/man2/
timerfd_create.2.html
Retrieved 2014-07-23

[15] signalfd() man page
http://man7.org/linux/man-pages/man2/sig-
nalfd.2.html
Retrieved 2014-07-23

8

http://man7.org/linux/man-pages/man2/timerfd_create.2.html
http://man7.org/linux/man-pages/man2/signalfd.2.html

	HDswitch An interactive live video mixer for HD videos
	Abstract
	Introduction
	Requirements
	Basic design
	Implementation
	Efficient video stream handling
	Latency handling and timestamp generation

	Limitations and further work
	Conclusion
	References

